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AN IN-SITU SURFACE FOURIER TRANSFORM INFRARED STUDY
OF THE ADSORPTION OF ISOQUINOLINE AT A STATIONARY
MERCURY ELECTRODE

DANIEL J. BLACKWOOD and STANLEY PONS

Deparrnmnt of Chemsrt.. Uwversity of Utah. Salt Lake Cy. UT 84112 (U.S.A.)

(Received 6th October 1987; in revised form 25th January 1988)

ABSTRACT

Subtractivelv normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) was used
to follow the potential dependent reorientations undergone by isoquinoline molecules that are adsorbed
at a mercury electrode surface. The differences in the relative intensity changes on reorientation between
the in-plane and out-of-plane vibrational modes have been explained in terms of field-induced infrared
absorption.

INTRODUCTION

The adsorption of isoquinoline on mercury surfaces has been previously studied
by electrocapillary methods [1], ellipsometry [21, double layer capacity measure-
ments [31, and a range of potential step techniques [4-7]. The interest in this system
is due in part to the fact that one observes well defined transitions in its physical
properties as the molecules undergo transitions in surface onentation and packing
under certain experimental conditions.

Isoquinoline molecules can be adsorbed on mercury in four different orientations
(Fig. 1). The previous investigations indicate the following behavior for the iso-
quinoline orientation as a function of potential and concentration: at low negative
potentials and low bulk concentrations, the molecules are believed to lie flat on the
mercury's surface (molecular plane parallel to the surface). However. on increasing
either the potential (in the negative direction) or the bulk concentration, the
isoquinoline molecules are forced up into either the 4,5 position [2] or the 5,6
position [1]. This reorientation occurs gradually with the changing coordinates, and

* To whom correspondence should be addressed.
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Fig. 1. Possible orientatons for the adsorption of iso-,,>inoline on mercury.

proceeds through a series of phases containing mixtures of these three orientations

of isoquinoline molecules.
Increases in the potential to more negative values, and at sufficiently high

concentrations. results in an abrupt reorientation to the 6,7 position. The reason
that this second transition is much sharper than the first lies in the fact that mixed
phases which would contain the 6,7 orientation are energetically less favorable than
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Fig. 2. Superficial excess as a function of potential for a mercury electrode in contact with 0.5 Mol din 3

Na 2SO4 and the following isoquinoline concentrations: (a) 2.1 X 10 - (saturated). (b) 6.3 x 10 - , and (c)
2.1 x10 - 4 tool dm - 3. (Data from Gierst and co-workers Ill)



a complete monolayer of any of the pure standing onentational phases. Gierst and
co-workers (1] have produced a graph showing the dependence of the superficial
excess on both potential and bulk concentration from their electrocapillary data; we
reproduce some of their data in Fig. 2.

This well defined system offers an excellent opportunity for surface infrared
reflectance spectroscopic investigation. The infrared study of mercury electrode
surfaces has been impeded by experimental difficulties in cell design and optical
considerations; the methods used herein are adapted from a configuration that has
been used by Bewick and co-workers [8] for some time.

For an isoquinoline molecule adsorbed onto the surface of mercury, the compo-
nent of its total dipole moment that is perpendicular to the surface will increase as
its orientation changes from:

Flat-4,5-5.6-6,7

It is well established (from considerations of the surface selection rules for infrared
radiation reflection from metal surfaces and its interactions with adsorbed species)
that infrared radiation will be absorbed most strongly by vibrational modes that
have a component of the dipole derivative (with respect to the normal coordinate)
normal to the metal surface. One thus predicts that as the isoquinoline molecule
reorients in the order listed above, the absorption of infrared radiation by the
in-plane vibrational modes should generally increase, while the out-of-plane modes
should generally decrease. In the flat orientation there is no component of the
dipole moment perpendicular to the surface for the in-plane modes. However,
infrared active modes (and in some cases infrared forbidden transitions) can still be
observed due to field-induced infrared adsorption (9-12].

Y A0 EXPERIMENTAL

', \ Isoquinoline (Aldrich 97%) was purified further by refluxing with BaO for 30 min
J-A- . " and distilling under vacuum. The resulting white crystalline solid had a melting

v1," point of 260 C. The purified isoquinoline was stored in the dark, at 00 C and under
an argon atmosphere. Mercury was triple distilled (American Scientific) and all
other chemicals were of AnalaR grade quality. All solutions were prepared with
triply distilled water. All glassware was cleaned in 50 + 50 (v/v) mixture of HNO 3
and H2 SO4, rinsed with triply distilled water and steamed (triply distilled water) for
half an hour. A thin layer cell was designed (Fig. 3) which could be mounted in a
vertical position on the spectrometer. The mercury was held in position by a simple
glass tube, and electrical contact was achieved with a piece of platinum wire, dipped
directly into the mercury. All potentials reported are with reference to a saturated
calomel electrode.

The FTIR spectrometer used was a vacuum bench Brucker IBM Model IR/98,
modified so that the optical beam was brought upwards through the sample
compartment and made to reflect from the bottom of the horizontal mercury
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Fig. 3. Construction of the thin layer mercury reflectance cell used for all experinmens.

surface. The design for the system for performing infrared reflectance experiments

from mercury has been described by Bewick [8].

RESULTS AND DISCUSSION

The abrupt transition to the 6.7 orientation manifests itself in cyclic voltammetry
as a sharp current spike (Fig. 4). The cathodic spike was found to contain a charge
of 2.9 AC cm--. while its anodic counterpart contained 3.3 AC cm -2 . The peak
separation was 100 mV, although this relatively large value is due in part to the high
iR drop present in thin layer cells.

Figure 5 shows typical SNIFTIRS spectra for isoquinoline molecules adsorbed
on mercury. The reference spectrum in each case was obtained at 0.0 V vs. SCE
reference electrode- at this potential the molecules are believed to be oriented flat
on the metal surface. The vibrational frequencies of the band structure (positive
values of absorbance) are easily assigned since they are essentially the same as those
reported by Wait and McNerney [14] for pure isoquinoline. The differences in the
spectra are that the bands for the adsorbed species exhibit blue shifting of 3-4 cm-1
relative to the neat material, and the relative intensities of the bands in each case are
markedly changed.

The major vibrational modes observed for isoquinoline are listed in Table 1. The
assignments made by Wait and McNerney [14] are also included. The authors made
their assignments from considerations of the higher D~h symmetry parent species,
instead of the C, symmetry group; they demonstrated that the assignments arising
from this representation are reasonable.
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Fig. 4. Cyclic voltammogram for a mercury electrode in contact with a solution 2.1 X 10-2 mol dinm3 in
isoquinoline+O.5 mol dm - NaSO4 at 10 mV s - .

The absence of band with negative absorbances in these difference spectra is
probably due to the fact that the vibrational frequencies of the bands do not exhibit
potential dependence (Fig. 5). and that this species is adsorbed over the entire
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Fig. S. SNIFTIRS difference spectra for a mercury electrode in contact with a solution that is 1.3x10-2

mol din- 3 in isoqwinoline. Referene potential at 0.0 V vs. SCE. sample potential (a) -0.60, (b) -0.75.
(c) -0.80 and (d) -0.9 V vs. SCE
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TABLE I

Assignments of the maJor infrared bands for isoquinoline at the mercury water interface

Band Assignment C, D2h In- or out-of-plane

1628 Ps A' B" In
1589 ', A' As In
1575 "26 + pig A A" As + B3. In+Out
1500 '11 A B2. In
1462 "12 A Aa In
1435 V13 A B3, In
1380 " 4 A' Aa In
1376 i A B1 In
1273 A B1. In
1257 ", A' B2. In
1215 P-16 + V42 A" + A" A. + Bit Out+Out
1180 pig A' B3, In

potential region investigated. This is consistent with results of electrochemical
double layer experiments. The spectra then represent relatively simple changes in
the absorption of infrared radiation. The intensities of the bands are markedly
potential dependent; an especially large change in the intensities is observed at
potentials where the orientation changes to the vertical 6.7 configuration.

A unique characteristic of infrared spectra for species adsorbed on electrodes is
the potential dependence of the frequency of certain vibrational modes. Two types
of mechanisms have been proposed to explain the potential dependent shift of
vibrational frequencies. The first involves molecular orbital arguments; the second is
based on arguments for interactions between the electric field across the double
layer and the highly polarizable electrons of the adsorbed molecule (an electrochem-
ical Stark effect). In the molecular orbital mechanism, electrons can be donated to
empty metal orbitals through a-type overlap with filled ligand orbitals of the
appropriate symmetry. The metal can "back" donate electrons from filled d-orbitals
to empty wr* antibonding orbitals on the adsorbate. When a molecule is adsorbed
on a clean uncharged metal surface. its vibrational frequency may either increase or
decrease from the frequency of the unadsorbed molecule depending upon the
relative contributions of the a- and ir-bonding interactions. If the u-bonding
interaction is dominant the frequency will decrease; conversely, the frequency will
increase if the a-bonding interaction is dominant. When the charge on the electrode
is made negative, the bond is weakened due to donation of charge from the metal
into adsorbate ir* orbitals and the band frequency shifts to lower wavenumber.
When the charge on the metal is made positive shift to higher frequency occurs. At a
mercury electrode, however, there are no p- or d-electrons available to participate in
a back-bonding interaction. The observation of potential dependent frequency shifts
is therefore not expected according to this model.

The electric field mechanism involves coupling of the electric field across the
double layer with highly polarizable electrons of the adsorbate. According to the
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Fig. 6. Expanded section of Fig. 5 showing examples of differences in the magnitude of integrated area
for two absorption bands with the same changes in elecode potential. The potentials for he difference
spectra are -0.6 and +0.9 V. The change in area for the 1380 cm-1 in-plane mode has increased by a
factor of - 4. whereas that of the 1215 cm ' out-of-plane mode has increased by a factor of 1 10.

Gouy-Chapman-Stern model, for high concentrations of supporting electrolytes,
most of the potential drop will occur within the first 0.5 to I nm of the electrode
surface, and the drop will be approximately linear with distance. When a layer of
adsorbed species is present, it can act as a dielectric across which the greatest
portion of the potential drop will occur. Electric fields of the order of 109 V m-1
can exist in this region. Interaction of this electric field with the dipole moment of
the molecule leads to changes in the vibrational frequency of the molecule.

The absorbances in Fig. 5 have positive values. This indicates that the absorption
of infrared radiation is strongest when the isoquinoline molecules are lying flat on
the electrode surface (in these difference s-"ectra, positive values of absorbance
denote stronger absorption at the positive potential, i.e. potentials where the
isoquinoline is adsorbed in the flat configuration). This is an opposite result from
that suggested from the surface selection rule, and suggests that there is a strong
field-induced absorption for the in-plane modes in this configuration, similar to that
observed in previous work for pyrene adsorbed on platinum (11).

There are marked differences in the changes in intensity of the in-plane and
out-of-plane modes of the adsorbed isoquinoline with potential (Fig. 6). The
normalized intensities (against their intensity at -0.1 V vs. SCE) of the vibrational
bands shown in Fig. 5 were plotted against potential (Fig. 7). Since the bands in Fig.
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Fig. 7. Plot of the normalized intensities of the bands observed in the SNIFTIRS difference spectra at a
mercury electrode in contact with a 1.3 x 10- 2 mol dm - 3 solution of isoquinoline vs. the sample
potential. Reference potential - 0.0 V vs. SCE

5 have positive values of absorbance. the positive vertical axis in Fig. 7 represents a
decrease in the amount of infrared radiation absorbed. The figure shows clearly that
the amount of radiation absorbed by the out-of-plane vibrational modes decreases
up to a factor of 10 as the potential is changed from -0.1 to -1.0 V, wherease the
in-plane vibrational modes only change by a factor of 3 to 4 over the same potential
range. (We point out at this point that solution soluble isoquinoline would not
exhibit this effect.)

The out-of-plane vibrational modes have dipole derivative changes perpendicular
to the metal surface when the molecules are lying flat on the surface. Absorption of
radiation by the surface selection rule is thus allowed. When the orientation changes
to the 6,7 canfiguration. absorption by these modes, which are now parallel to the
surface, is forbidden. as is any field induced interaction since most of the molecule
lies outside of most of the field gradient. A large decrease in absorption (large
increase in positive absorbance in the difference spectra) is thus expected and
observed. In the case of the in-plane modes, at high electric field in the double layer
leads to strong field-induced absorption for the flatly adsorbed isoquinoline, as
expected. When reorienting to the 6,7 configuration, the modes become allowed by
the surface selection rule. A smaller decrease in absorption is then observed.



CONCLUSIONS

The reorientations of isoqumoline molecules adsorbed onto a mercury electrode
have been observed successfully by surface reflection infrared spectroscopy. It has
been shown that field-induced infrared absorption makes a major contribution to
the intensities of the vibrational band structure of aromatic organic molecules
adsorbed on mercury.

The SNIFTIRS data show clearly that isoqumoline goes through an abrupt
reorientation at potentials more negative than about -0.73 V vs. SCE (the actual
transition potential being dependent on the bulk solution concentration) to the erect
6.7 standing position.

The lack of any potential dependence of the vibrational frequencies may be
explained by the fact that mercury has no available vacant s-orbitals into which
back-bonding (which is observed on all d metals) can occur. In this case, therefore,
adsorption occurs only through a-bonding. This point is under continued investiga-
tion.
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